博客
关于我
pandas.groupby().rank()用法详解
阅读量:344 次
发布时间:2019-03-04

本文共 2774 字,大约阅读时间需要 9 分钟。

  • pandas.DataFrame.groupby()

Group DataFrame using a mapper or by a Series of columns.

A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups.

  • Parameters
  1. by : mapping, function, label, or list of labes

    Used to determine the groups for the groupby.

    If by is a function, it’s called on each value of the object’s index.

    If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups.

    If an ndarray is passed, the values are used as-is determine the groups.

    A label or list of labels may be passed to group by the columns in self.

  2. axis : {0 or ‘index’, 1 or ‘columns’}, default 0

    Split along rows (0) or columns (1).

  3. level : int, level name, or sequence of such, default None

    If the axis is a MultiIndex (hierarchical), group by a particular level or levels.

  4. as_index : bool, default True

    For aggregated output, return object with group labels. Only relevant for DataFrame input. as_index=False is effectively ‘SQL-style’ grouped output.

  5. sort : bool, default True

    Sort group keys.

    Get better performance by turning this off. Note this does not influence the order of observations within each group.

    Groupby preserves the order of rows within each group.

  6. group_keys : bool, default True

    When calling apply, add group keys to index to identify pieces.

  7. squeeze : bool, default True

    Reduce the dimensionality of the return type if possible, otherwise return a consistent type.

  8. observed : bool, default False

    This only applies if any of the groupers are Categoricals.

    If True : only show observed values for categorical groupers.

    If False : show all values for categorical groupers.

  9. dropna : bool, default True

    If True, and if group keys contain NA values, NA values together with row/column will be dropped.

    If False, NA values will also be treated as the key in groups.

  • Returns

Returns a groupby object that contains information about the groups.

  • PANDAS.DATAFRAME.RANK

DataFrame.rank(axis=0, method='average', numeric_only=None, na_option='keep', ascending=True,pct=False)

Computing numerical data ranks (1 through n) along axis.

By default, equal values are assigned a rank that is the average of the ranks of those values.

method : {‘average’, ‘min’, ‘max’, ‘first’, ‘dense’}, default ‘average’

How to rank the group of records that have the same value.

  1. average : average rank of the group
  2. min: lowest rank in the group
  3. max: highest rank in the group
  4. first: ranks assigned in order they appear in the array
  5. dense: like ‘min’, but rank always increases by 1 between groups.

method是针对rank排名讲的,指的是原始数据序列中存在相同的数据,这些相同数据返回的rank排名,如果是max就取相同数据所占顺序中最大的,min就是其中最小的。first就是按照他们在原始数据中所出现的顺序给定rank。

  • References

转载地址:http://zdge.baihongyu.com/

你可能感兴趣的文章
MySQL为Null会导致5个问题,个个致命!
查看>>
MySQL为什么不建议使用delete删除数据?
查看>>
MySQL主从、环境搭建、主从配制
查看>>
Mysql主从不同步
查看>>
mysql主从同步及清除信息
查看>>
MySQL主从同步相关-主从多久的延迟?
查看>>
mysql主从同步配置方法和原理
查看>>
mysql主从复制 master和slave配置的参数大全
查看>>
MySQL主从复制几个重要的启动选项
查看>>
MySQL主从复制及排错
查看>>
mysql主从复制及故障修复
查看>>
MySQL主从复制的原理和实践操作
查看>>
webpack loader配置全流程详解
查看>>
mysql主从复制,读写分离,半同步复制实现
查看>>
MySQL主从失败 错误Got fatal error 1236解决方法
查看>>
MySQL主从架构与读写分离实战
查看>>
MySQL主从篇:死磕主从复制中数据同步原理与优化
查看>>
mysql主从配置
查看>>
MySQL之2003-Can‘t connect to MySQL server on ‘localhost‘(10038)的解决办法
查看>>
MySQL之CRUD
查看>>