博客
关于我
pandas.groupby().rank()用法详解
阅读量:344 次
发布时间:2019-03-04

本文共 2774 字,大约阅读时间需要 9 分钟。

  • pandas.DataFrame.groupby()

Group DataFrame using a mapper or by a Series of columns.

A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups.

  • Parameters
  1. by : mapping, function, label, or list of labes

    Used to determine the groups for the groupby.

    If by is a function, it’s called on each value of the object’s index.

    If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups.

    If an ndarray is passed, the values are used as-is determine the groups.

    A label or list of labels may be passed to group by the columns in self.

  2. axis : {0 or ‘index’, 1 or ‘columns’}, default 0

    Split along rows (0) or columns (1).

  3. level : int, level name, or sequence of such, default None

    If the axis is a MultiIndex (hierarchical), group by a particular level or levels.

  4. as_index : bool, default True

    For aggregated output, return object with group labels. Only relevant for DataFrame input. as_index=False is effectively ‘SQL-style’ grouped output.

  5. sort : bool, default True

    Sort group keys.

    Get better performance by turning this off. Note this does not influence the order of observations within each group.

    Groupby preserves the order of rows within each group.

  6. group_keys : bool, default True

    When calling apply, add group keys to index to identify pieces.

  7. squeeze : bool, default True

    Reduce the dimensionality of the return type if possible, otherwise return a consistent type.

  8. observed : bool, default False

    This only applies if any of the groupers are Categoricals.

    If True : only show observed values for categorical groupers.

    If False : show all values for categorical groupers.

  9. dropna : bool, default True

    If True, and if group keys contain NA values, NA values together with row/column will be dropped.

    If False, NA values will also be treated as the key in groups.

  • Returns

Returns a groupby object that contains information about the groups.

  • PANDAS.DATAFRAME.RANK

DataFrame.rank(axis=0, method='average', numeric_only=None, na_option='keep', ascending=True,pct=False)

Computing numerical data ranks (1 through n) along axis.

By default, equal values are assigned a rank that is the average of the ranks of those values.

method : {‘average’, ‘min’, ‘max’, ‘first’, ‘dense’}, default ‘average’

How to rank the group of records that have the same value.

  1. average : average rank of the group
  2. min: lowest rank in the group
  3. max: highest rank in the group
  4. first: ranks assigned in order they appear in the array
  5. dense: like ‘min’, but rank always increases by 1 between groups.

method是针对rank排名讲的,指的是原始数据序列中存在相同的数据,这些相同数据返回的rank排名,如果是max就取相同数据所占顺序中最大的,min就是其中最小的。first就是按照他们在原始数据中所出现的顺序给定rank。

  • References

转载地址:http://zdge.baihongyu.com/

你可能感兴趣的文章
mudbox卸载/完美解决安装失败/如何彻底卸载清除干净mudbox各种残留注册表和文件的方法...
查看>>
mysql 1264_关于mysql 出现 1264 Out of range value for column 错误的解决办法
查看>>
mysql 1593_Linux高可用(HA)之MySQL主从复制中出现1593错误码的低级错误
查看>>
mysql 5.6 修改端口_mysql5.6.24怎么修改端口号
查看>>
MySQL 8.0 恢复孤立文件每表ibd文件
查看>>
MySQL 8.0开始Group by不再排序
查看>>
mysql ansi nulls_SET ANSI_NULLS ON SET QUOTED_IDENTIFIER ON 什么意思
查看>>
multi swiper bug solution
查看>>
MySQL Binlog 日志监听与 Spring 集成实战
查看>>
MySQL binlog三种模式
查看>>
multi-angle cosine and sines
查看>>
Mysql Can't connect to MySQL server
查看>>
mysql case when 乱码_Mysql CASE WHEN 用法
查看>>
Multicast1
查看>>
mysql client library_MySQL数据库之zabbix3.x安装出现“configure: error: Not found mysqlclient library”的解决办法...
查看>>
MySQL Cluster 7.0.36 发布
查看>>
Multimodal Unsupervised Image-to-Image Translation多通道无监督图像翻译
查看>>
MySQL Cluster与MGR集群实战
查看>>
multipart/form-data与application/octet-stream的区别、application/x-www-form-urlencoded
查看>>
mysql cmake 报错,MySQL云服务器应用及cmake报错解决办法
查看>>