博客
关于我
pandas.groupby().rank()用法详解
阅读量:344 次
发布时间:2019-03-04

本文共 2774 字,大约阅读时间需要 9 分钟。

  • pandas.DataFrame.groupby()

Group DataFrame using a mapper or by a Series of columns.

A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups.

  • Parameters
  1. by : mapping, function, label, or list of labes

    Used to determine the groups for the groupby.

    If by is a function, it’s called on each value of the object’s index.

    If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups.

    If an ndarray is passed, the values are used as-is determine the groups.

    A label or list of labels may be passed to group by the columns in self.

  2. axis : {0 or ‘index’, 1 or ‘columns’}, default 0

    Split along rows (0) or columns (1).

  3. level : int, level name, or sequence of such, default None

    If the axis is a MultiIndex (hierarchical), group by a particular level or levels.

  4. as_index : bool, default True

    For aggregated output, return object with group labels. Only relevant for DataFrame input. as_index=False is effectively ‘SQL-style’ grouped output.

  5. sort : bool, default True

    Sort group keys.

    Get better performance by turning this off. Note this does not influence the order of observations within each group.

    Groupby preserves the order of rows within each group.

  6. group_keys : bool, default True

    When calling apply, add group keys to index to identify pieces.

  7. squeeze : bool, default True

    Reduce the dimensionality of the return type if possible, otherwise return a consistent type.

  8. observed : bool, default False

    This only applies if any of the groupers are Categoricals.

    If True : only show observed values for categorical groupers.

    If False : show all values for categorical groupers.

  9. dropna : bool, default True

    If True, and if group keys contain NA values, NA values together with row/column will be dropped.

    If False, NA values will also be treated as the key in groups.

  • Returns

Returns a groupby object that contains information about the groups.

  • PANDAS.DATAFRAME.RANK

DataFrame.rank(axis=0, method='average', numeric_only=None, na_option='keep', ascending=True,pct=False)

Computing numerical data ranks (1 through n) along axis.

By default, equal values are assigned a rank that is the average of the ranks of those values.

method : {‘average’, ‘min’, ‘max’, ‘first’, ‘dense’}, default ‘average’

How to rank the group of records that have the same value.

  1. average : average rank of the group
  2. min: lowest rank in the group
  3. max: highest rank in the group
  4. first: ranks assigned in order they appear in the array
  5. dense: like ‘min’, but rank always increases by 1 between groups.

method是针对rank排名讲的,指的是原始数据序列中存在相同的数据,这些相同数据返回的rank排名,如果是max就取相同数据所占顺序中最大的,min就是其中最小的。first就是按照他们在原始数据中所出现的顺序给定rank。

  • References

转载地址:http://zdge.baihongyu.com/

你可能感兴趣的文章
Nginx配置Https证书
查看>>
Nginx配置ssl实现https
查看>>
Nginx配置TCP代理指南
查看>>
Nginx配置——不记录指定文件类型日志
查看>>
nginx配置一、二级域名、多域名对应(api接口、前端网站、后台管理网站)
查看>>
Nginx配置代理解决本地html进行ajax请求接口跨域问题
查看>>
nginx配置全解
查看>>
Nginx配置参数中文说明
查看>>
Nginx配置后台网关映射路径
查看>>
nginx配置域名和ip同时访问、开放多端口
查看>>
Nginx配置多个不同端口服务共用80端口
查看>>
Nginx配置好ssl,但$_SERVER[‘HTTPS‘]取不到值
查看>>
Nginx配置如何一键生成
查看>>
Nginx配置实例-负载均衡实例:平均访问多台服务器
查看>>
Nginx配置文件nginx.conf中文详解(总结)
查看>>
Nginx配置负载均衡到后台网关集群
查看>>
ngrok | 内网穿透,支持 HTTPS、国内访问、静态域名
查看>>
NHibernate学习[1]
查看>>
NHibernate异常:No persister for的解决办法
查看>>
NIFI1.21.0_Mysql到Mysql增量CDC同步中_日期类型_以及null数据同步处理补充---大数据之Nifi工作笔记0057
查看>>